Solving Equations

• Choose the best method (factoring, square roots, quadratic formula, etc) to solve each equation. Provide both real and complex (imaginary) solutions.

1.
$$\sqrt{5x+1} = x-4$$
 2. $6x = 3x^2$

3.
$$\sqrt[3]{x} + 4 = 2$$
 4. 27 - x² = 54

5.
$$2x^2 - 5x = 7$$
 6. $x^2 + 10x + 21 = 0$

7.
$$6x - 5 = 2x^2$$

8. $\frac{1}{3}(x - 6) = -\frac{2}{5}x + \frac{14}{15}$

9.
$$\frac{1}{2}x^3 = 4$$
 10. $12x^3 - 84x^2 + 120x = 0$

Simplifying Radicals

Simplify the Expressions:

Example:

Simplify the expression
$$\sqrt{20}$$

 $\sqrt{20} = \sqrt{4} \cdot \sqrt{5}$
 $= 2\sqrt{5}$

1. $\sqrt{40}$ **2.** $\sqrt{243}$ **3.** $\sqrt{52}$ **4.** $\sqrt{320}$

Simplify the Radical Expressions:

Examples:

a.
$$5\sqrt{3} - \sqrt{2}$$
 b. $(2\sqrt{2})(5\sqrt{3})$ c. $(5\sqrt{7})^2$
 $= 4\sqrt{3} - \sqrt{2}$ $= 2 \cdot 5 \cdot \sqrt{2} \cdot \sqrt{3}$ $= 5^2 \sqrt{7^2}$
 $= 10\sqrt{6}$ $= 175$

5. $\sqrt{75} + \sqrt{3}$ **6.** $(5\sqrt{4}) (2\sqrt{4})$ **7.** $(6\sqrt{5})^2$

Simplifying Quotients with Radicals:

Example:

Simplify the quotient $\frac{6}{\sqrt{5}}$	$\frac{\frac{6}{\sqrt{5}}}{\frac{6}{\sqrt{5}}} = \frac{\frac{6}{\sqrt{5}}}{\frac{6\sqrt{5}}{\sqrt{5}\sqrt{5}}}$ $= \frac{\frac{6\sqrt{5}}{\sqrt{5}\sqrt{5}}}{\frac{6\sqrt{5}}{5}}$
9. $\frac{2\sqrt{3}}{\sqrt{5}}$	10. $\frac{\sqrt{18}}{\sqrt{10}}$

8. $\frac{4}{\sqrt{3}}$

Exponent Rules For $a \neq 0, b \neq 0$		
Product Rule	$a^x \times a^y = a^{x+y}$	
Quotient Rule	$a^x \div a^y = a^{x-y}$	
Power Rule	$\left(a^{x}\right)^{y}=a^{xy}$	
Power of a Product Rule	$(ab)^x = a^x b^x$	
Power of a Fraction Rule	$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$	
Zero Exponent	$a^{\circ} = 1$	
Negative Exponent	$a^{-x} = \frac{1}{a^x}$	
Fractional Exponent	$a^{\frac{x}{y}} = \sqrt[y]{a^x}$	

Simplifying Exponents

Simplify each expression.

- 1. $(c^5)(c)(c^2)$ 2. $\frac{m^{15}}{m^3}$ 3. $(k^4)^5$
- 4. d^0 5. $(p^4q^2)(p^7q^5)$ 6. $\frac{45y^3z^{10}}{5y^3z}$
- 7. $(-t^7)^3$ 8. $3f^3g^0$ 9. $(4h^5k^3)(15k^2h^3)$

10. $\frac{12a^4b^6}{36ab^2c}$ 11. $(3m^2n)^4$ 12. $(12x^2y)^0$	
---	--